Воскресенье, 23.06.2024, 05:52
Приветствую Вас Гость


Вероятности сложных событий - 4

Задача 1. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
ПРОВЕРЬ ОТВЕТ
0,02


Задача 2. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
ПРОВЕРЬ ОТВЕТ
0,52


Задача 3. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).
ПРОВЕРЬ ОТВЕТ
0,91


Задача 4. Вероятность попасть в мишень равна 0,7. Произведено три выстрела. Какова вероятность, что мишень была поражена ровно два раза?
ПРОВЕРЬ ОТВЕТ
0,441


Задача 5. При каждом выстреле стрелок поражает мишень с вероятностью 0,8. В случае промаха стрелок делает повторный выстрел. Выстрелы повторяются до тех пор, пока мишень не будет поражена. Какое наименьшее количество выстрелов по мишени должен совершить стрелок, чтобы вероятность попадания в мишень составила более 0,995?
ПРОВЕРЬ ОТВЕТ
4


Задача 6. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем - 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
ПРОВЕРЬ ОТВЕТ
5


Задача 7. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,1, а при каждом последующем – 0,9. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,95?
ПРОВЕРЬ ОТВЕТ
3


Задача 8. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,6. Сколько выстрелов потребуется чтобы мишень была поражена с вероятностью не меньше, чем 0,97.
ПРОВЕРЬ ОТВЕТ
4


Задача 9. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятность двух осечек. Результат округлите до сотых.
ПРОВЕРЬ ОТВЕТ
0,07


Задача 10. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.
ПРОВЕРЬ ОТВЕТ
0,38


Задача 11. У биатлониста Антона вероятность попадания в мишень при каждом выстреле одинакова. Вероятность, что при двух выстрелах Антон оба раза промахнется, равна 0,04. Какова вероятность, что при двух выстрелах Антон поразит ровно одну мишень?
ПРОВЕРЬ ОТВЕТ
0,32


Задача 12. На тренировке баскетболист Майкл попадает 3‐очковый бросок с вероятностью 0,9, если бросает мячом фирмы «Nike». Если Майкл выполняет 3‐очковый бросок мячом фирмы «Adidas», то попадает с вероятностью 0,7. В корзине лежат 10 тренировочных мячей: 6 фирмы «Nike» и 4 фирмы «Adidas». Майкл наудачу берет из корзины первый попавшийся мяч и совершает 3‐очковый бросок. Найдите вероятность того, что бросок Майкла будет точен.
ПРОВЕРЬ ОТВЕТ
0,82


Задача 13. Вероятность хотя бы одного попадания в мишень стрелком при трех выстрелах равна 0,875. Какова вероятность попадания при одном выстреле?
ПРОВЕРЬ ОТВЕТ
0,5


Задача 14. Стрелок в тире стреляет по мишени до тех пор, пока не попадёт в неё. Вероятность попадания при каждом отдельном выстреле равна p = 0,6. Найдите вероятность того, что стрелку потребуется ровно три попытки.
ПРОВЕРЬ ОТВЕТ
0,096


Задача 15. Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
ПРОВЕРЬ ОТВЕТ
0,06


Задача 16. Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 3 раза попал в мишени, а последние 2 раза промахнулся. Результат округлите до сотых.
ПРОВЕРЬ ОТВЕТ
0,02


Задача 17. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,4?
ПРОВЕРЬ ОТВЕТ
3


Задача 18. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,4 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,9?
ПРОВЕРЬ ОТВЕТ
5


Задача 19. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов. Известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,5. Найдите отношение вероятностей событий «стрелок поразит ровно пять мишеней» и «стрелок поразит ровно три мишени».
ПРОВЕРЬ ОТВЕТ
0,9


Задача 20. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов. Известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,8. Во сколько раз вероятность события «стрелок поразит ровно четыре мишени» больше вероятности события «стрелок поразит ровно три мишени»?
ПРОВЕРЬ ОТВЕТ
12


Задача 21. Трое охотников одновременно стреляют по кабану, каждый по одному выстрелу. Вероятности попадания охотников в цель равны: 0,7 – для первого, 0,75 – для второго и 0,8 – для третьего. Оказалось, что в кабана попали ровно две пули. Найдите вероятность того, что это пули второго и третьего охотников. Ответ округлите до сотых.
ПРОВЕРЬ ОТВЕТ
0,42


Задача 22. Стрелок Олег стреляет по шести одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,3. Чему равно отношение вероятности события «Олег поразит ровно три мишени» к вероятности события «Олег поразит ровно четыре мишени»? Ответ округлите до сотых.
ПРОВЕРЬ ОТВЕТ
1,28


1. Свой блок открываем
Вход на сайт
Калькулятор
Формулы
Площадь треугольника

Основные формулы тригонометрии

Производные основных функций

Линейная функция
Поиск
Календарь
«  Июнь 2024  »
ПнВтСрЧтПтСбВс
     12
3456789
10111213141516
17181920212223
24252627282930
Архив записей
Наш опрос
Оцените мой сайт
Всего ответов: 251
Мини-чат
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Друзья сайта