16. В основании прямой призмы АВCDA1B1C1D1 лежит квадрат ABCD со стороной 2, а высота призмы равна 1. Точка Е лежит на диагонали BD1, причём ВЕ = 1.
а) Постройте сечение призмы плоскостью А1С1Е.
б) Найдите угол между плоскостью сечения и плоскостью АВС.
18. Две окружности касаются внешним образом в точке К. Прямая АВ касается первой окружности в точке А, а второй - в точке В. Прямая ВК пересекает первую окружность в точке D, прямая АК пересекает вторую окружность в точке С.
а) Докажите, что прямые AD и ВС параллельны.
б) Найдите площадь треугольника АКВ, если известно, что радиусы окружностей равны 4 и 1.
19. 31 декабря 2013 года Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга ( то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?
21. На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно -3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно -8.
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?